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Abstract. We investigate the transition to quantum chaos, induced by static imperfections, for an operat-
ing quantum computer that simulates efficiently a dynamical quantum system, the sawtooth map. For the
different dynamical regimes of the map, we discuss the quantum chaos border induced by static imperfec-
tions by analyzing the statistical properties of the quantum computer eigenvalues. For small imperfection
strengths the level spacing statistics is close to the case of quasi-integrable systems while above the border
it is described by the random matrix theory. We have found that the border drops exponentially with the
number of qubits, both in the ergodic and quasi-integrable dynamical regimes of the map characterized by
a complex phase space structure. On the contrary, the regime with integrable map dynamics remains more
stable against static imperfections since in this case the border drops only algebraically with the number
of qubits.

PACS. 03.67.Lx Quantum computation – 05.45.Mt Semiclassical chaos (“quantum chaos”) –
24.10.Cn Many-body theory

1 Introduction

Quantum computers, if constructed, would be capable
of solving some computational problems much more ef-
ficiently than classical computers [1]. Shor [2] constructed
a quantum algorithm which performs integer factorization
exponentially faster than any known classical algorithm.
It was also shown by Grover [3] that the search of an
item in an unstructured list can be done with a square
root speedup over any classical algorithm. These results
motivated a great body of experimental proposals for the
construction of a realistic quantum computer (see [1] and
references therein).

While the technological challenge to develop scalable,
fault tolerant quantum processors is highly demanding, it
is well appreciated that decoherence, due to the coupling
with the environment, will be the ultimate obstacle to the
realization of such devices. In addition, even in the ideal
case in which the quantum computer is isolated from the
external world, a proper operability of the computer is not
guaranteed: unavoidable internal static imperfections in
the quantum computer hardware represent another source
of errors. For example, the energy spacing between the
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two states of each qubit can fluctuate, e.g. due to mag-
netic field inhomogeneities in nuclear magnetic resonance
quantum processors [1]. Moreover, since qubit interactions
are required to operate two-qubit gates and generate en-
tangled states, unwanted residual interactions will appear.
For example, when the inter-qubit coupling is switched off,
e.g. via a potential barrier created by a point contact gate
in the quantum dots proposal [4], some unavoidable resid-
ual interactions still remain. Therefore the quantum com-
puter hardware can be modeled as a qubit lattice and one
has to consider it as a quantum many-qubit (-body) inter-
acting system [5]. Many-body quantum systems have been
widely investigated in the field of quantum chaos [6,7] and
it is now well-known that residual interactions can lead to
quantum chaos characterized by ergodicity of the eigen-
states and level spacing statistics described by random
matrix theory [8–11]. In the regime of quantum chaos the
wave functions and energy spectra become so complicated
that a statistical description should be applied to them.
Thus it is important to study the stability of quantum
information processing in the presence of realistic models
of quantum computer hardware imperfections and in con-
crete examples of quantum algorithms. The stability of
the static quantum computer hardware was studied in [5]
and it was shown that residual inter-qubit interactions can
destroy a generic state stored in the quantum computer if
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the amplitude of static imperfections is above the quan-
tum chaos border. For a static quantum hardware this
border drops linearly with the number of qubits while the
average energy level spacing drops exponentially. Above
the quantum chaos border an exponential number of ideal
multi-qubit states becomes mixed after a finite chaotic
time scale. The implications of such imperfections for the
Grover algorithm and quantum Fourier transform were
analyzed in reference [12].

In this paper, we address the question of the transi-
tion to chaos for an operating quantum computer, which
is running an efficient quantum algorithm simulating the
dynamical evolution of the so-called quantum sawtooth
map [13]. The sawtooth map is a paradigm of classical [14]
and quantum [15] chaos, and exhibits a variety of differ-
ent behaviors, from anomalous diffusion to quantum er-
godicity and dynamical localization. We note that in the
above quantum algorithm the number of redundant qubits
can be reduced to zero and complex dynamics can be in-
vestigated already with less than 10 qubits. It is there-
fore important to study the stability of such algorithm, in
view of its possible implementation in the first generation
of quantum processors operating with a small number of
qubits [16,17].

Since spectral statistics is the most valuable tool to de-
tect the transition to quantum chaos [6,7], we study the
statistical properties of the eigenvalues of the quantum
sawtooth map, simulating different dynamical regimes (er-
godic, quasi-integrable, and integrable), in the presence of
static imperfections in the quantum computer hardware.
We will show that the threshold for the transition to chaos
induced by static imperfections drops exponentially with
the number of qubits both in the ergodic and in the quasi-
integrable regime, while in the integrable regime the chaos
border drops only polynomially with the number of qubits.
We note that this paper complements reference [18], de-
voted to the study of the eigenvectors of the model in the
ergodic regime.

The paper is organized as follows. In Section 2 we dis-
cuss the quantum algorithm simulating the quantum saw-
tooth map model and its realization in the presence of
hardware static imperfections. The effect of these imper-
fections on the spectral statistics of the model is described
in Sections 3, 4, and 5, for the ergodic, quasi-integrable,
and integrable regime, respectively. Our conclusions are
presented in Section 6.

2 The model and the quantum algorithm

The quantum sawtooth map is the quantized version of
the classical sawtooth map, which is given by

n = n+ k(θ − π), θ = θ + Tn, (1)

where (n, θ) are conjugated action-angle variables (0 ≤
θ < 2π), and the bars denote the variables after one
map iteration. Introducing the rescaled momentum vari-
able p = Tn, one can see that the classical dynamics de-
pends only on the single parameter K = kT . As it is

known, the classical motion is stable for −4 < K < 0 and
completely chaotic for K < −4 and K > 0 [14].

The quantum evolution for one map iteration is
described by a unitary operator Û0 (Floquet operator)
acting on the wave function ψ:

ψ = Û0ψ = e−iTn̂2/2eik(θ̂−π)2/2ψ, (2)

where n̂ = −i∂/∂θ and ψ(θ + 2π) = ψ(θ) (we set � = 1).
The classical limit corresponds to k → ∞, T → 0, and
K = kT = const.

In this paper, we study the quantum sawtooth map (2)
closed on the torus −π ≤ p < π. Therefore the classical
limit is obtained by increasing the number of qubits nq =
log2N (N is the total number of levels), with T = 2π/N
(k = K/T , −N/2 ≤ n < N/2). We consider the ergodic,
quasi-integrable and integrable regimes. To this end, we
take K =

√
2, K = −0.1, and K = −1, respectively.

The quantum algorithm introduced in [13] simulates
efficiently the quantum dynamics (2) using a register of
nq qubits. It is based on the forward/backward quantum
Fourier transform [19] between the θ and n representa-
tions and has some elements of the quantum algorithm
for kicked rotator [20]. Such an approach is rather conve-
nient since the Floquet operator Û0 is the product of two
operators Ûk = eik(θ̂−π)2/2 and ÛT = e−iTn̂2/2: the first
one is diagonal in the θ̂ representation, the latter in the n̂
representation. Thus the quantum algorithm for one map
iteration requires the following steps.

I. One can write θ in binary notation:

θ = 2π
∑

αi2−i, (3)

with αi ∈ {0, 1}. From that one gets

(θ − π)2 = 4π2
∑
i,j

(
αi2−i − 1

2nq

) (
αj2−j − 1

2nq

)
·

(4)

This term can be put in the unitary operator Uk, giving
the decomposition

eik(θ−π)2/2 =
∏
i,j

ei2π2k(αi2
−i− 1

2nq
)(αj2

−j− 1
2nq

)
, (5)

which is the product of n2
q two-qubit gates, each one acting

non-trivially only in the 4-dimensional subspace spanned
by the two qubits in question. In the computational basis
{|00〉, |01〉, |10〉, |11〉} each two-qubit gate can be written
as exp(ikπ2D), where D is a diagonal matrix with elements

{
1

2n2
q

,− 1
nq

(
1
2j

− 1
2nq

)
,− 1

nq

(
1
2i

− 1
2nq

)
,

2
(

1
2i

− 1
2nq

) (
1
2j

− 1
2nq

)}
· (6)

II. The change from the θ to the n representation is ob-
tained by means of the quantum Fourier transform, which
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requires nq Hadamard gates and nq(nq − 1)/2 controlled-
phase shift gates [19].

III. In the new representation the operator ÛT has
essentially the same form as Ûk in step I and therefore it
can be decomposed in n2

q gates similarly to equation (5).
IV. We go back to the initial θ representation via in-

verse quantum Fourier transform.
On the whole the algorithm requires 3n2

q + nq gates
per map iteration. Therefore it is exponentially efficient
with respect to any known classical algorithm. Indeed the
most efficient way to simulate the quantum dynamics (2)
on a classical computer is based on forward/backward fast
Fourier transform and requires O(nq2nq) operations. We
stress that this quantum algorithm does not need any ex-
tra work space qubit. This is due to the fact that for the
quantum sawtooth map the kick operator Ûk has the same
quadratic form as the free rotation operator ÛT .

We model the quantum computer hardware as an lin-
ear array of qubits (spin halves) with static imperfections,
i.e. fluctuations in the individual qubit energies and resid-
ual short-range inter-qubit couplings [5]. The model is de-
scribed by the following many-body Hamiltonian:

Ĥs =
∑

i

(∆0 + δi)σ̂z
i +

∑
i<j

Jij σ̂
x
i σ̂

x
j , (7)

where the σ̂i are the Pauli matrices for the qubit i, and
∆0 is the average level spacing for one qubit. The second
sum in (7) runs over nearest-neighbor qubit pairs, zero
boundary conditions are applied, and δi, Jij are randomly
and uniformly distributed in the intervals [−δ/2, δ/2] and
[−J, J ], respectively. We model the implementation of
the above described algorithm as a sequence of instanta-
neous and perfect one- and two-qubit gates, separated by
a time interval τg, during which the hardware Hamilto-
nian (7) gives unwanted phase rotations and qubit cou-
plings. Therefore we study numerically the many-body
Hamiltonian

Ĥ(τ) = Ĥs + Ĥg(τ), (8)

where

Ĥg(τ) =
∑

k

δ(τ − kτg)ĥk. (9)

Here ĥk implements the kth elementary gate according
to the sequence prescribed by the above algorithm. We
assume that the average phase accumulation given by ∆0

is eliminated, e.g. by means of refocusing techniques [21].
Since the evolution operator (2) remains periodic in

the presence of static imperfections, Ûε,ρ(τ +T ) = Ûε,ρ(τ)
(ε ≡ δτg, ρ ≡ Jτg rescaled imperfection strengths), all
information about the system dynamics is included in the
quasi-energy eigenvalues λ(ε,ρ)

α and eigenstates φ(ε,ρ)
α of the

perturbed Floquet operator:

Ûε,ρ(T )φ(ε,ρ)
α = exp(iλ(ε,ρ)

α )φ(ε,ρ)
α . (10)

We study numerically the spectral statistics of the Floquet
operator (10) for a quantum computer running the quan-
tum sawtooth map algorithm in the presence of static im-
perfections described by (7). We construct numerically the
Floquet operator in the momentum representation (i.e.
the quantum register states basis) using the fact that the
one step map evolution (including static imperfections) of
each quantum register state gives a column in the matrix
representation of this operator.

We consider 4 ≤ nq ≤ 12 qubits. In order to reduce
statistical fluctuations, data are averaged over 3 ≤ ND ≤
103 random realizations of static imperfections. In this
way the total number of Floquet quasi-energies is ND ×
2nq ≈ 104, which is large enough to get stable results in
the study of spectral statistics.

3 The ergodic regime

We focus our attention first on the ergodic regime, where
the eigenfunctions of the unperturbed Floquet operator
are given by a complex superposition of order N =
2nq quantum register states. In particular, we consider
K =

√
2, where the corresponding classical sawtooth map

(1) is completely chaotic. In the ideal case in the absence of
static imperfections (ε = 0, ρ = 0), the eigenvalues of the
Floquet operator are divided in two different symmetry
classes, even and odd with respect to the transformation
n→ −n. Thus the Floquet operator has two blocks which
can be studied independently. A convenient tool to char-
acterize the spectral properties of the system is the level
spacing statistics P (s), giving the probability to find two
consecutive eigenvalues whose energy difference, normal-
ized to the average level spacing, is in [s, s+ ds]. Since we
are in the ergodic regime, the level spacing statistics for
each block is well described by the random matrix the-
ory [6,7] in the presence of time-reversal symmetry:

PO(s) =
π

2
se−πs2/4. (11)

This theoretical distribution is in agreement with the nu-
merical results shown in the inset of Figure 1 for the sym-
metric class. The global spectral statistics can be com-
puted from the single spectral statistics of each symmetry
class [6], and is given by:

P
(2)
O (s) =

1
2

(
erfc

(√
πs

4

)
πs

4
e−πs2/16 + e−πs2/8

)
,

(12)

again in good agreement with the numerical data of Fig-
ure 1.

Since static imperfections break the time reversal sym-
metry, the two symmetry classes become mixed and the
system undergoes a crossover from (12) to a different ran-
dom matrix statistics [6,7]:

PU (s) =
32s2

π2
e−4s2/π . (13)
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Fig. 1. The level spacing distribution for K =
√

2, nq = 11
and J = 0, at ε = 0 (circles) and ε = 10−3 (squares). The
dashed and full lines give the theoretical distribution (12) and
(13), respectively. Inset: statistics for one symmetry class at
ε = 0 and same parameter values as in the main figure. The
dashed line is the theoretical distribution (11).

The good agreement between this limiting distribution
and the actual statistics computed from numerical data
is shown in Figure 1 for nq = 11 and ε = 10−3, J = 0.
A convenient quantity to characterize the crossover from
one limiting distribution to another is [9]

η =

∫ s0

0
(P (s) − PU (s))ds∫ s0

0 (P (2)
O (s) − PU (s))ds

· (14)

where s0 = 0.50285... is the first intersection point of
P

(2)
O (s) and PU (s). This parameter goes from one to zero,

when the spacing probability changes from (12) to (13).
The behavior of η as a function of ε is shown in Figure 2,
for different nq values. This figure shows that it drops to
zero when the imperfection strength grows. For ε→ 0 and
small nq, there are significant deviations from the value
η = 1 corresponding to the limiting distribution (12). This
is due to the fact that the ε = 0 statistics includes only
2nq levels spacings. For very small ε values the statistics
remains poor since each static imperfections realization
gives essentially the same P (s) distribution. Nevertheless,
it is clear that η(ε = 0) goes to one when the number of
qubits increases.

In order to study the dependence of the η-crossover
on the number of qubits, we define the critical imperfec-
tions strength εχ as the ε value at which η = 0.2 (similar
results are obtained for different η values). In Figure 3
we show that εχ drops exponentially with the number of
qubits. This exponential threshold is due to the fact that,
in the ergodic regime, quantum eigenstates are given by a
complex superposition of an exponentially large number
of quantum register states. Indeed, due to quantum chaos,
the eigenstates of the unperturbed (ε = 0, J = 0) Floquet

Fig. 2. Dependence of the η parameter on the scaled imper-
fection strength ε at K =

√
2, J = 0. From right to left:

nq = 4, 5, ..., 12.

operator (10) can be written as

φ(0)
α =

N∑
m=1

c(m)
α um. (15)

Here um are the quantum register states, and c(m)
α are ran-

domly fluctuating components, with |c(m)
α | ∼ 1/

√
N due

to wave function normalization. The transition matrix ele-
ments between unperturbed eigenstates can be computed
in perturbation theory. For J = 0, they have a typical
value

Vtyp ∼ |〈φ(0)
β |

nq∑
i=1

δiσ̂
z
i τgng|φ(0)

α 〉|

∼ τgn
2
q|

N∑
m,n=1

c(m)
α c

(n)�
β

nq∑
i=1

δi〈un|σ̂z
i |um〉|

∼ εn5/2
q |

N∑
m=1

c(m)
α c

(m)�
β ξ(m)| ∼ εn5/2

q N−1/2. (16)

In this expression, the typical phase error is δ√nqξ
(m)

(sum of nq random detunings δi’s), with ξ(m) random
sign, and τgng ∼ τgn

2
q is the time used by the quantum

computer to simulate one map step. The last estimate
in (16) results from the sum of N terms of amplitude
|c(m)

α c
(m)�
β | ∼ 1/N and random phases. Since the spac-

ing between quasi-energy eigenstates is ∆E ∼ 1/N , the
threshold for the breaking of perturbation theory can be
estimated as

Vtyp/∆E ∼ εχn
5/2
q

√
N ∼ 1. (17)

The analytical result

εχ ∼ 1

n
5/2
q

√
N

(18)
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Fig. 3. Dependence of the imperfections strength εχ at which
η = 0.2 on the number of qubits, for K =

√
2, J = 0 (di-

amonds) and J = δ (circles). The line gives the theoreti-
cal dependence εχ = A2−nq/2n−2.5

q , with the fitting constant
A = 4.3.

is confirmed by the numerical data of Figure 3. For the
case J = δ, the threshold εχ approximately decreases by
a factor 1.2 with respect to the J = 0 case (see again
Fig. 3), since residual inter-qubits interactions introduce
further couplings between Floquet eigenstates. However,
the same functional dependence (18) takes place.

We note that the same exponential sensitivity to static
imperfections was detected for the Floquet eigenstates in
reference [18]. This confirms that spectral statistics are
a useful tool to characterize the mixing of unperturbed
eigenstates in an operating quantum computer.

4 The quasi-integrable regime

We now focus our study on the regime of quasi-
integrability of the sawtooth map, in which the system
is not chaotic (i.e. the Lyapunov exponent is zero) and
there is a non integrable component in the phase space.
In this situation, the system exhibits interesting physical
properties, such as anomalous diffusion and hierarchical
phase space structures [13]. In this section, we consider
the case K = −0.1 and we study the transition to chaos
for the eigenstates of a quantum computer simulating the
quantum sawtooth map.

A useful tool to demonstrate the transition to chaos
induced by static imperfections is the parametric depen-
dence of the quasi-energy eigenvalues. The evolution of
a part of the spectrum as a function of the imperfection
strength ε (at J = 0) is shown in Figure 4. It makes evident
the qualitative change induced by static imperfections. At
small ε the spectrum exhibits quasi-degeneracies, while
at large ε avoided crossings appear. Indeed, at small ε,
Floquet eigenstates with very close eigenvalues may lay
so far apart that their overlap is negligible. Thus there
is essentially no level repulsion for these eigenvalues. On

Fig. 4. Dependence of quasi-energy eigenvalues on the imper-
fections strength ε, for nq = 9, K = −0.1, J = 0. The thick
dashed (dot-dashed) curve corresponds to the eigenvector rep-
resented in Fig. 5 right (left).

the contrary, at large ε, Floquet eigenstates are delocal-
ized and therefore their overlap is significant, and induces
level repulsion [22]. The delocalizing effect of static im-
perfections is evident in the Husimi functions of Figure 5,
drawn from two typical Floquet eigenstates [23,24].

The two top plots of Figure 5 represent two exact
eigenstates (ε = 0, J = 0). In the right picture, the quan-
tum probability is concentrated around an ellipse corre-
sponding to a classical integrable trajectory (a torus in the
phase space (θ, p)). We note that the map (1) is the dis-
cretized time evolution for an harmonic oscillator. There-
fore it gives elliptic trajectories as far as border effects
can be neglected. A completely different kind of eigenvec-
tor appears on the left picture. The Husimi function is
spread, and this reflects the properties of the correspond-
ing classical non-integrable trajectories which diffuse in a
non-Brownian way [13]. We note that the number of such
eigenstates is non-negligible. Indeed, we have checked that
the probability of finding a diffusive classical trajectory
starting from a randomly chosen initial condition is 0.12.
We also note that classical diffusion is suppressed by quan-
tum interference effects giving a distribution localized in
momentum. The remaining pictures of Figure 5 represent
the same Floquet eigenstates, computed in the presence
of static imperfections. The middle figures are obtained
slightly below the chaos border induced by static imper-
fections, and maintain same similarities with the exact
eigenstates. On the contrary, in the bottom pictures, taken
above the chaos border, the eigenfunctions are spread in
all the available phase space and any structure has been
destroyed. We note that, starting from completely differ-
ent unperturbed eigenfunctions, one gets statistically in-
distinguishable eigenfunctions with randomly fluctuating
components.

We now characterize the transition by studying the
spectral statistics. In this regime, the limiting P (s) dis-
tribution at ε = 0 is non trivial. Indeed, the Shnirelman
theorem states that for a nearly integrable system the level
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Fig. 5. Husimi functions in action-angle variables (p, θ) (−π ≤
p < π –vertical axis– and 0 ≤ θ < 2π –horizontal axis–)
for the quantum sawtooth map at nq = 9, K = −0.1,
J = 0. The left (right) column corresponds to the dot-dashed
(dashed) line in Figure 4, for ε = 0 (top), ε = 10−3 (middle),
ε = 3×10−3 (bottom). We choose the ratio of the action-angle
uncertainties s = ∆p/∆θ = T∆n/∆θ = 1 (∆p∆θ = T/2).
Black corresponds to the minimum of the probability distribu-
tion and white to the maximum (color plots are available at
http://arXiv.org/abs/quant-ph/0206130).

spacing statistics P (s) exhibits a huge peak near the ori-
gin (s = 0) [25,26]. In the following we choose to eliminate
such peak, related to time-reversal invariance (n → −n,
θ → 2π−θ). To do that we operate the transformation [27]



n→ n+ φ,

θ → θ + θ0,
(19)

where φ plays the role of an Aharonov-Bohm flux [28].
The spectral statistics is still complex since in the classi-
cal limit the phase space has two components, integrable
and non integrable. In the semi-classical limit, the levels
belonging to these two components become uncorrelated
and the global spacing statistics is given by the superpo-
sition of each component’s statistics [29]. We note that in

Fig. 6. Level spacing distribution for nq = 11, K = −0.1,
θ0 = φ =

√
2/5, J = 0, ε = 0 (circles) and ε = 10−3 (squares).

The solid line gives the Wigner-Dyson distribution (Eq. (13)).

this case both components have non-trivial statistics. In
particular it has been shown that for the related harmonic
oscillator case the quasi-energy spectral statistics exhibits
level repulsion and a finite number of peaks [30], instead
of the Poisson statistics typical of integrable systems.

The spectral statistics at ε = 0, J = 0 is shown in
Figure 6, for nq = 11. In the same figure, one can see
that static imperfections induce a crossover to the Wigner-
Dyson distribution (13). One can compare this figure with
Figure 1. The ε = 0 distributions are completely different,
reflecting different dynamical regimes. On the contrary,
the same universal distribution is found in the regime in
which static imperfections destroy all symmetries. Even
though in this case we cannot provide an analytical ex-
pression for the ε = J = 0 statistics, the crossover to the
Wigner-Dyson distribution (13) can be characterized by
the parameter

η̃ =
(∫ +∞

0

[P (s) − PU (s)]2ds
)1/2

, (20)

measuring the distance of the spacing distribution
from (13). The behavior of η̃ as a function of ε (at J = 0)
is shown in Figure 7 for various nq values. This figure
shows again that the Wigner-Dyson distribution (η̃ = 0)
is reached by increasing ε.

Similarly to what we have done in the ergodic regime,
we define a critical imperfections strength εχ as the ε value
at which η̃ = 0.2. The dependence of εχ on the number of
qubits is shown in Figure 8. Quite surprisingly, even in this
quasi-integrable regime we can fit the exponential drop of
εχ with nq via the analytical function εχ = B2−nq/2n

−5/2
q ,

with the fitting constant B = 6.5. Therefore, it seems that
the theoretical argument developed in the previous section
for ergodic eigenstates has a broader validity and can ap-
ply also in the more general mixed phase space dynamics.

The same exponential sensitivity to static imperfec-
tions can be detected also in the Floquet eigenstates.
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Fig. 7. Dependence of the parameter η̃ on the imperfection
strength ε for K = −0.1, θ0 = φ =

√
2/5, J = 0. From right to

left: nq = 4, 5, . . . , 12.

The mixing of unperturbed eigenstates, induced by static
imperfections, is characterized by the quantum eigenstates
entropy

Sα = −
N∑

β=1

pαβ log2 pαβ, (21)

where pαβ = |〈φ(0)
β |φ(ε,ρ)

α 〉|2. In this way Sα = 0 if φ(ε,ρ)
α

coincides with one eigenstate at ε = ρ = 0, Sα = 1 if φ(ε,ρ)
α

is equally composed of two ideal (ε = ρ = 0) eigenstates,
and Sα = nq (maximal value) if all φ(0)

β (β = 1, ..., N =

2nq) contribute equally to φ(ε,ρ)
α . In Figure 8 we show that

the critical imperfection strength at which S = 1 drops
exponentially with the number of qubits (S is the average
of Sα over α and static imperfection realizations). This
shows that the transition to chaos can be characterized
both by the mixing of unperturbed eigenstates and by the
transition in the spectral statistics.

5 The integrable regime

We now consider the integrable case K = −1. Indepen-
dently of nq, the quasi-energy spectrum is composed of
6 degenerate levels (see Fig. 9), λ(j) = (2π/6)j (up to an
unessential global phase factor). This phenomenon can be
explained from classical mechanics: indeed the 6th iterate
of the map (1) gives the identity, i.e. all orbits are peri-
odic with period at most 6 [31]. The same phenomenon
can be observed at K = −2 (K = −3), where the spec-
trum has a degeneracy 4 (3) and the 4th (third) iterate
of (1) is the identity. In these cases, the quantum evolu-
tion and the classical discretized evolution coincide: this
means that the quantum unitary evolution (2) maps a
given phase space distribution in the same way as the
discretized Liouville operator does in classical mechanics
(see, e.g., Ref. [32]).

Fig. 8. Dependence of the imperfections strength εχ at which
η̃ = 0.2 (see Fig. 7) on the number of qubits nq (diamonds),
for K = −0.1, θ0 = φ =

√
2/5, J = 0. Squares give the

critical imperfection strengths at which the quantum eigen-
states entropy S = 1. Lines give the theoretical dependency

εχ = BN−1/2n
−5/2
q , with the fitting constant B = 1 (below)

and B = 6.5 (above).

Fig. 9. Quasi-energy levels λα at nq = 9, K = −1, ε = J = 0
(thick bands) and theoretical values (dashed lines).

Static imperfections induce a crossover to the univer-
sal Wigner-Dyson distribution (13), that can be character-
ized by the parameter η̃ defined in equation (20). Again,
one can define a critical imperfection strength εχ as the
value of ε at which η̃(εχ) = 0.2. The result is shown in
Figure 10, where it is seen that εχ drops polynomially
with nq: εχ ∝ n

−5/2
q . This happens both for J = 0 and

J = δ. We note that this algebraic dependence contrasts
the exponential decay observed in previous sections for
the ergodic and quasi-integrable regimes. This can be un-
derstood via the following argument. Quantum ergodicity
can be reached only when levels of the different bands of
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Fig. 10. Dependence of the imperfections strength εχ at which
η̃ = 0.2 on the number of qubits nq, for K = −1, J = 0
(diamonds) and J = δ (circles); note the log-log scale. Lines

give the theoretical dependence εχ = Cn
−5/2
q , with the fitting

constant C = 1 (below) and C = 1.8 (above).

Figure 9 are mixed. Non-degenerate levels are separated
by an energy spacing ∆E which is N -independent. On the
other hand, also the typical overlap between nearby eigen-
states (in space) is N -independent (their space separation
drops with N , but also their typical width drops with N).
Since the typical error is δ√nq and the time needed to
simulate one map step is ∼ τgn

2
q (see the discussion fol-

lowing Eq. (16)), one can estimate the typical transition
matrix element Vtyp ∼ εn

5/2
q , and the threshold for the

breaking of perturbation theory as

Vtyp/∆E ∼ εχn
5/2
q ∼ 1, (22)

giving the analytical estimate

εχ ∼ n−5/2
q . (23)

A natural question is what happens to the chaos border εχ
in the quasi-integrable regime when parameters are very
close to integrability. This constitutes a complex problem,
whose solution is beyond the scope of our paper. We sim-
ply note that, for K = m + δK (m = −1,−2,−3), with
δK � 1, the quasienergy levels are no longer degener-
ate as in Figure 9. The spectrum is composed of bands
of width ∆E ∝ δK2nq . Therefore the merging of these
bands takes place for (δK)m ∝ 2−nq . For finite nq there
is a finite δK < (δK)m region (dropping exponentially
with nq) in which the theory developed for the integrable
regime should apply.

6 Conclusions

In this paper, we have studied the transition to quan-
tum chaos, induced by static imperfections, in the spec-
tral statistics of an operating quantum computer. Above

the chaos border, the spectral statistics is described by
random matrix theory, any symmetry of the problem is
broken, and the eigenstates of an operating quantum com-
puter are composed of an exponentially large number of
ideal eigenstates, i.e. any trace of the ideal eigenstates is
destroyed. The threshold for the transition to chaos drops
exponentially with the number of qubits, both in the er-
godic and in the more general quasi-integrable regime. On
the contrary, in the integrable regime the chaos border
drops only algebraically with the number of qubits. This is
due to the presence of a finite number of bands in the spec-
trum of the time evolution operator related to global peri-
odicity of classical dynamics. We note that similar strong
spectral degeneracies have been observed in the Grover’s
algorithm and in the quantum Fourier transform in refer-
ence [12]. We also stress that a complex dynamical system
is generically quasi-integrable. The simulation of such sys-
tems is well accessible to the first generation of quantum
computers with less than 10 qubits and we think that this
class of quantum algorithms deserves further studies.
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